Show simple item record

dc.contributor.authorZawedde, Annet Eva
dc.contributor.authorNesse Tyssøy, Hilde
dc.contributor.authorStadsnes, Johan
dc.contributor.authorSandanger, Marit Irene J.
dc.date.accessioned2020-06-26T11:39:23Z
dc.date.available2020-06-26T11:39:23Z
dc.date.issued2019
dc.PublishedZawedde AE, Nesse Tyssøy H, Stadsnes J, Sandanger MIS. Are EEP Events Important for the Tertiary Ozone Maximum?. Journal of Geophysical Research (JGR): Space Physics. 2019;124(7):5976-5994eng
dc.identifier.issn2169-9402en_US
dc.identifier.issn2169-9380en_US
dc.identifier.urihttps://hdl.handle.net/1956/23046
dc.description.abstractEnergetic particle precipitation (EPP) increases the production of odd hydrogen (HOX ) species in the mesosphere, which catalytically destroy ozone (O3) in sunlight. Hence, the EPP‐HOX impact on the tertiary O3 maximum (TOM) depends on a complex geometry of a geographic‐oriented TOM, geomagnetic‐oriented auroral zone, producing short‐lived HOX species, and a destruction process depending on the solar zenith angle (SZA). Particle observations from the Medium Energy Proton and Electron Detectors telescopes aboard the Polar Orbiting Environmental Satellites, and hydroxyl (OH) and O3 mixing ratios from Aura microwave limb sounder (MLS) are used to investigate the potential limitations of using the MLS observations to study EPP‐OH impact on the TOM in the Northern Hemisphere. Our results show limited overlap between the auroral zone and the TOM at twilight conditions. A composite analysis indicates O3 mixing ratio decrease over the auroral zone lagged by ∼1 day compared to the maximum energetic electron precipitation (EEP)‐OH impact. Hence, MLS is predominantly observing a lagged and lower estimate of the response of O3 to EEP‐OH at SZA > 95°. The EEP impact region within the TOM is smaller than the overlap region, strongly modulated by the background atmospheric dynamics. The results, although limited by the satellites viewing conditions, imply that the importance of EEP upon O3 mixing ratio is strongly influenced by the background atmosphere, both in terms of chemistry and dynamics. Multisatellite observations at different solar local times are required to separate the direct from the lagged EEP‐OH impact on O3.en_US
dc.language.isoengeng
dc.publisherAGUen_US
dc.rightsAttribution-NonCommercial-NoDerivs CC BY-NC-NDeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleAre EEP Events Important for the Tertiary Ozone Maximum?en_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2019-11-22T09:31:07Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2019 The Author(s)en_US
dc.identifier.doihttps://doi.org/10.1029/2018ja026201
dc.identifier.cristin1728305
dc.source.journalJournal of Geophysical Research (JGR): Space Physics
dc.identifier.citationJournal of Geophysical Research (JGR): Space Physics. 2019, 124 (7), 5976-5994.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs CC BY-NC-ND
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs CC BY-NC-ND