• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Social Sciences
  • Department of Information Science and Media Studies
  • Master theses
  • View Item
  •   Home
  • Faculty of Social Sciences
  • Department of Information Science and Media Studies
  • Master theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A multimodal approach for event detection from lifelogs

Wiik, Espen Holst
Master thesis
Thumbnail
View/Open
master thesis (1.348Mb)
URI
https://hdl.handle.net/1956/23342
Date
2020-07-07
Metadata
Show full item record
Collections
  • Master theses [57]
Abstract
This paper analyzes how personal lifelog data which contains biometric, visual, activity data, can be leveraged to detect points in time where the individual is partaking in an eating activity. To answer this question, three artificial neural network models were introduced. Firstly, a image object detection model trained to detect eating related objects using the YOLO framework. Secondly, a feed-forward neural network (FANN) and a Long-Short-Term-Memory (LSTM) neural network model which attempts to detect ‘eating moments’ in the lifelog data. The results show promise, with F1-score and AUC score of 0.489 and 0.796 for the FANN model, and F1-score of 0.74 and AUC score of 0.835 respectively. However, there are clear rooms for improvement on all models. The models and methods introduced can help individuals monitor their nutrition habits so they are empowered to make healthy lifestyle decisions. Additionally, several methods for streamlining event detection in lifelog data are introduced.
Publisher
The University of Bergen
Copyright
Copyright the Author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit