• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Department of Mathematics
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Department of Mathematics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative Linearisation Schemes for Doubly Degenerate Parabolic Equations

Both, Jakub; Kumar, Kundan; Nordbotten, Jan Martin; Pop, Iuliu Sorin; Radu, Florin Adrian
Conference object, Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Accepted version (340.0Kb)
URI
https://hdl.handle.net/1956/23724
Date
2019
Metadata
Show full item record
Collections
  • Department of Mathematics [801]
Original version
https://doi.org/10.1007/978-3-319-96415-7_3
Abstract
Mathematical models for flow and reactive transport in porous media often involve non-linear, degenerate parabolic equations. Their solutions have low regularity, and therefore lower order schemes are used for the numerical approximation. Here the backward Euler method is combined with a mixed finite element method, which results in a stable and locally mass-conservative scheme. At each time step one has to solve a non-linear algebraic system, for which one needs adequate iterative solvers. Finding robust ones is particularly challenging here, since the problems considered are double degenerate (i.e. two type of degeneracies are allowed: parabolic-elliptic and parabolic-hyperbolic). Commonly used schemes, like Newton and Picard, are defined either for non-degenerate problems, or after regularising the problem in the case of degenerate ones. Convergence is guaranteed only if the initial guess is sufficiently close to the solution, which translates into severe restrictions on the time step. Here we discuss an iterative linearisation scheme which builds on the L-scheme, and does not employ any regularisation. We prove its rigorous convergence, which is obtained for Hölder type non-linearities. Finally, we present numerical results confirming the theoretical ones, and compare the behaviour of the proposed scheme with schemes based on a regularisation step.
Publisher
Springer
Journal
Lecture Notes in Computational Science and Engineering
Copyright
Copyright Springer Nature Switzerland AG 2019

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit