• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diagram Predicate Framework meets Model Versioning and Deep Metamodelling

Rossini, Alessandro
Doctoral thesis
Thumbnail
View/Open
Main thesis (1.387Mb)
URI
https://hdl.handle.net/1956/5261
Date
2011-12-07
Metadata
Show full item record
Collections
  • Department of Informatics [746]
Abstract
Model-driven engineering (MDE) is a branch of software engineering which aims at improving the productivity, quality and cost-effectiveness of software by shifting the paradigm from code-centric to model-centric. MDE promotes models and modelling languages as the main artefacts of the development process and model transformation as the primary technique to generate (parts of) software systems out of models. Models enable developers to reason at a higher level of abstraction, while model transformation restrains developers from repetitive and error-prone tasks such as coding. Although techniques and tools for MDE have advanced considerably during the last decade, several concepts and standards in MDE are still defined semi-formally, which may not guarantee the degree of precision required by MDE. This thesis provides a formalisation of concepts in MDE based on the Diagram Predicate Framework (DPF), which was already under development before this work was initiated. DPF is a formal diagrammatic specification framework founded on category theory and graph transformation. In particular, the main contribution of this thesis is the consolidation of DPF and the formalisation of two novel techniques in MDE, namely model versioning and deep metamodelling. The content of this thesis is based on a sequence of publications resulting from the joint work with researchers from the University of Bergen, the Bergen University College and the Autonomous University of Madrid. The work presented in this thesis is neither purely theoretical nor purely practical; it rather seeks to bridge the gap between these worlds. It provides a formal approach to model versioning and deep metamodelling motivated and illustrated by practical examples, while it introduces only the theoretical constructions which are necessary to investigate, formalise and solve these practical challenges.
Publisher
The University of Bergen
Copyright
Copyright the author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit