• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Informatics
  • Department of Informatics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On a New Method for Derivative Free Optimization

Frimannslund, Lennart; Steihaug, Trond
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Frimannslund11.pdf (629.9Kb)
URI
https://hdl.handle.net/1956/5783
Date
2011
Metadata
Show full item record
Collections
  • Department of Informatics [746]
Abstract
A new derivative-free optimization method for unconstrained optimization of partially separable functions is presented. Using average curvature information computed from sampled function values the method generates an average Hessian-like matrix and uses its eigenvectors as new search directions. Numerical experiments demonstrate that this new derivative free optimization method has the very desirable property of avoiding saddle points. This is illustrated on two test functions and compared to other well known derivative free methods. Further, we compare the efficiency of the new method with two classical derivative methods using a class of testproblems.
Publisher
IARIA
Copyright
Copyright the authors. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit