Using Thoracic Ultrasonography to Accurately Assess Pneumothorax Progression During Positive Pressure Ventilation
Oveland, Nils Petter; Lossius, Hans Morten; Wemmelund, Kristian Borup; Stokkeland, Paal Johan; Knudsen, Lars; Sloth, Erik
Peer reviewed, Journal article
Published version
View/ Open
Date
2013-02Metadata
Show full item recordCollections
Original version
https://doi.org/10.1378/chest.12-1445Abstract
Background: Although thoracic ultrasonography accurately determines the size and extent of occult pneumothoraces (PTXs) in spontaneously breathing patients, there is uncertainty about patients receiving positive pressure ventilation. We compared the lung point (ie, the area where the collapsed lung still adheres to the inside of the chest wall) using the two modalities ultrasonography and CT scanning to determine whether ultrasonography can be used reliably to assess PTX progression in a positive-pressure-ventilated porcine model. Methods: Air was introduced in incremental steps into fi ve hemithoraces in three intubated porcine models. The lung point was identifi ed on ultrasound imaging and referenced against the lateral limit of the intrapleural air space identifi ed on the CT scans. The distance from the sternum to the lung point (S-LP) was measured on the CT scans and correlated to the insuffl ated air volume. Results: The mean total difference between the 131 ultrasound and CT scan lung points was 6.8 mm (SD, 7.1 mm; range, 0.0-29.3 mm). A mixed-model regression analysis showed a linear relationship between the S-LP distances and the PTX volume ( P < .001). Conclusions: In an experimental porcine model, we found a linear relation between the PTX size and the lateral position of the lung point. The accuracy of thoracic ultrasonography for identifying the lung point (and, thus, the PTX extent) was comparable to that of CT imaging. These clinically relevant results suggest that ultrasonography may be safe and accurate in monitoring PTX progression during positive pressure ventilation.