• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • Vis innførsel
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling compaction effects on the elastic properties of clay-water composites

Moyano, Bernardo; Spikes, Kyle Thomas; Johansen, Tor Arne; Mondol, Nazmul Haque
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
Moyano et al_Geophysics.pdf (13.38Mb)
Permanent lenke
https://hdl.handle.net/1956/8694
Utgivelsesdato
2012-09
Metadata
Vis full innførsel
Samlinger
  • Department of Earth Science [861]
Originalversjon
https://doi.org/10.1190/geo2011-0426.1
Sammendrag
Modeling the elastic properties of clay-bearing rocks (shales) requires thorough knowledge of the mineral constituents, their elastic properties, pore space microstructure, and orientations of clay platelets. Information about these variables and their complex interrelationships is rarely available for real rocks. We theoretically modeled the elastic properties of synthetic clay-water composites compacted in the laboratory, including estimates of pore space topology and percolation behavior. The mineralogy of the samples was known exactly, and the focus was on two monomineralic samples comprised of kaolinite and smectite. We used differential effective medium theory (DEM) and analysis of scanning electron microscope (SEM) images of the compacted kaolinite and smectite samples. Percolation behavior was included through calculations of critical porosities from measurements of the liquid limits of the individual clay powders. Quantitative analysis of the SEM images showed that the large scale (>0.1 μm) pore space of the smectite composite had more rounded pores (mean aspect ratio α = 0.55) than the kaolinite composite (mean pore’s aspect ratio α = 0.44). However, models that used only these largescale pore shapes could not explain the compressional and shear velocity measurements. DEM simulations with a single pore aspect ratio showed that bulk and shear moduli are controlled by different pore shapes. Conversely, modeling results that combined critical porosity and dual porosity models into DEM theory compared well with the measured bulk and shear moduli of compacting kaolinite and smectite composites. The methods and results we used could be used to model unconsolidated clay-bearing rocks of more complex mineralogy.
Utgiver
Society of Exploration Geophysicists
Tidsskrift
Geophysics
Opphavsrett
Copyright 2012 Society of Exploration Geophysicists. All rights reserved, use is subject to SEG terms of use and conditions.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit