• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Chemistry
  • Department of Chemistry
  • Vis innførsel
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Chemistry
  • Department of Chemistry
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing myelin-specific membrane proteins using hybrid nanoparticles

Hetland, Øystein
Master thesis
Åpne
master thesis (Låst)
Permanent lenke
https://hdl.handle.net/11250/2711955
Utgivelsesdato
2020-12-03
Metadata
Vis full innførsel
Samlinger
  • Department of Chemistry [335]
Sammendrag
Neuroscience is the study of the nervous system and its diseases. Neurological diseases are common and among the least understood class of disease in humans. Demyelinating diseases,, such as multiple sclerosis and Charcot-Marie-Tooth disease, impair the transmission of nerve signals throughout the body. This is caused by damage to the insulating membrane formed around neurons called myelin. The myelin membrane is held together by protein-membrane and protein-protein interactions, with these being a principal target of investigation. Contemporary methods for analyzing protein-membrane interactions are commonly restricted by inherent instabilities and weaknesses of the model system. Accordingly, the root cause of demyelination remains elusive, restricting our ability to provide a cure or effective treatment. Nanoscience is an emerging field of science, rapidly revolutionizing the natural sciences. In this thesis, nanoscience was applied to neuroscience, facilitating quantification of protein-membrane interactions. Through a process of rapid iteration, a novel model nano-bio hybrid system was developed, tested, and applied for analysis. The model system exploited nanoscale size, shape, and surface of amorphous silica nanoparticles to stabilize a lipid bilayer. The resulting hybrid of inorganic and organic material represents a label-free method for quantitative analysis of protein-membrane interactions. The hybrid was rigorously tested, using diverse ensemble of methods to gauge the viability of the model system. The mature system was used to investigate the myelin-associated proteins myelin basic protein (MBP), peripheral myelin protein 2 (P2) and cytoplasmic tail of myelin protein 0 (P0ct). Coupled with conventional methods, such as isothermal calorimetric titration, the hybrid eliciting previously unreported properties of myelin-associated proteins. The thermodynamics of membrane binding and insertion of MBP, P0ct and P2 were quantified, with a fidelity surpassing that of any other model system currently in use.
Beskrivelse
Postponed access: the file will be accessible after 2022-10-15
Utgiver
The University of Bergen
Opphavsrett
Copyright the Author. All rights reserved

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit