Show simple item record

dc.contributor.authorBessy, Stephane
dc.contributor.authorBougeret, Marin
dc.contributor.authorKrithika, R
dc.contributor.authorSahu, Abhishek
dc.contributor.authorSaurabh, Saket
dc.contributor.authorThiebaut, Jocelyn
dc.contributor.authorZehavi, Meirav
dc.PublishedLeibniz International Proceedings in Informatics. 2019, 138, 27:1--27:14en_US
dc.description.abstractA tournament is a directed graph in which there is a single arc between every pair of distinct vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show that the problem of determining if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they can be solved in 2^{O(k log k)} n^{O(1)} time and 2^{O(k)} n^{O(1)} time respectively. Moreover, they both admit a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2^{o(sqrt{k})} n^{O(1)} time under the Exponential-Time Hypothesis.en_US
dc.publisherDagstuhl Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titlePacking arc-disjoint cycles in tournamentsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.rights.holderCopyright 2019 The Authorsen_US
dc.source.journalLeibniz International Proceedings in Informaticsen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal