Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector
Aad, Georges; Abbott, Brad; Abbott, Dale C.; Abed Abud, Adam; Abeling, Kira; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; AbouZeid, Ossama Sherif Alexander; Abraham, Nadine L.; Abramowicz, Halina; Bjørke, Kristian; Bugge, Magnar Kopangen; Cameron, David Gordon; Catmore, James Richard; Garonne, Vincent; Gramstad, Eirik; Heggelund, Andreas Løkken; Hellesund, Simen; Håland, Even Simonsen; Morisbak, Vanja; Oppen, Henrik; Ould-Saada, Farid; Pedersen, Maiken; Read, Alexander Lincoln; Rye, Eli Bæverfjord; Røhne, Ole Myren; Sandaker, Heidi; Vadla, Knut Oddvar Høie; Buanes, Trygve; Djuvsland, Julia Isabell; Eigen, Gerald; Fomin, Nikolai; Lee, Graham Richard; Lipniacka, Anna; Martin dit Latour, Bertrand; Stugu, Bjarne; Træet, Are Sivertsen; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby S.; Achkar, Baida; Adam, Lennart; Adam-Bourdarios, Claire; Adamczyk, Leszek; Adamek, Lukas; Adersberger, Michael; Adigüzel, Aytül; Adorni, Sofia; Adye, Tim; ATLAS, Collaboration
Journal article, Peer reviewed
Published version
View/ Open
Date
2020-11-04Metadata
Show full item recordCollections
- Department of Physics and Technology [2183]
- Registrations from Cristin [10818]
Abstract
A search for new physics with non-resonant signals in dielectron and dimuon final states in the mass range above 2 TeV is presented. This is the first search for non-resonant signals in dilepton final states at the LHC to use a background estimate from the data. The data, corresponding to an integrated luminosity of 139 fb−1, were recorded by the ATLAS experiment in proton-proton collisions at a center-of-mass energy of s√ = 13 TeV during Run 2 of the Large Hadron Collider. The benchmark signal signature is a two-quark and two-lepton contact interaction, which would enhance the dilepton event rate at the TeV mass scale. To model the contribution from background processes a functional form is fit to the dilepton invariant-mass spectra in data in a mass region below the region of interest. It is then extrapolated to a high-mass signal region to obtain the expected background there. No significant deviation from the expected background is observed in the data. Upper limits at 95% CL on the number of events and the visible cross-section times branching fraction for processes involving new physics are provided. Observed (expected) 95% CL lower limits on the contact interaction energy scale reach 35.8 (37.6) TeV.