Vis enkel innførsel

dc.contributor.authorSpicher, Andres
dc.contributor.authorDeshpande, Kshitija
dc.contributor.authorJin, Yaqi
dc.contributor.authorOksavik, Kjellmar
dc.contributor.authorZettergren, Matthew D.
dc.contributor.authorClausen, Lasse Boy Novock
dc.contributor.authorMoen, Jøran Idar
dc.contributor.authorHairston, Marc R.
dc.contributor.authorBaddeley, Lisa
dc.date.accessioned2021-04-29T10:12:47Z
dc.date.available2021-04-29T10:12:47Z
dc.date.created2020-07-22T14:50:06Z
dc.date.issued2020
dc.PublishedJournal of Geophysical Research (JGR): Space Physics. 2020, 125 (6), .
dc.identifier.issn2169-9380
dc.identifier.urihttps://hdl.handle.net/11250/2740332
dc.description.abstractWe present a multi‐instrument multiscale study of a channel of enhanced, inhomogeneous flow in the cusp ionosphere occurring on November 30, 2014. We provide evidence that strong Global Navigation Satellite System (GNSS) phase scintillations indices (σϕ>0.5 rad) can arise from such events, indicating that they are important in the context of space weather impacts on technology. We compare in detail two‐dimensional maps of ionospheric density, velocity, and temperatures obtained by the European Incoherent Scatter Scientific Association Svalbard Radar with scintillation indices detected from a network of four GNSS receivers around Svalbard and examine the different sources of free energy for irregularity creation. We observe that the strongest phase scintillations occur on the poleward side of the flow channel in a region of sheared plasma motion and structured low‐energy particle precipitation. As inhomogeneous plasma flows are evident in our observations, we perform a quantitative, nonlinear analysis of the Kelvin–Helmholtz instability (KHI) and its impact on phase scintillations using numerical simulations from the first principles‐based Geospace Environment Model of Ion‐Neutral Interactions and Satellite‐beacon Ionospheric‐scintillation Global Model of the upper Atmosphere. Using representative values consistent with the radar data, we show that KHI can efficiently create density structures along with considerable scintillations and is thus likely to contribute significantly under similar conditions, which are frequent in the cusp.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleOn the Production of Ionospheric Irregularities Via Kelvin-Helmholtz Instability Associated with Cusp Flow Channelsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020. The Authors.en_US
dc.source.articlenumbere2019JA027734en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2019JA027734
dc.identifier.cristin1820203
dc.source.journalJournal of Geophysical Research (JGR): Space Physicsen_US
dc.source.40125
dc.source.146
dc.relation.projectNorges forskningsråd: 275653en_US
dc.identifier.citationJournal of Geophysical Research: Space Physics. 2020, 125 (6), e2019JA027734.en_US
dc.source.volume125en_US
dc.source.issue6en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal