dc.contributor.author | Hoff, Michael | |
dc.contributor.author | Knutsen, Andreas Leopold | |
dc.date.accessioned | 2021-05-07T12:51:58Z | |
dc.date.available | 2021-05-07T12:51:58Z | |
dc.date.created | 2020-12-18T12:51:34Z | |
dc.date.issued | 2020 | |
dc.Published | Geometriae Dedicata. 2020, . | |
dc.identifier.issn | 0046-5755 | |
dc.identifier.uri | https://hdl.handle.net/11250/2754196 | |
dc.description.abstract | We explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–Mukai bundles of minimal c2. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | Brill–Noether general K3 surfaces with the maximal number of elliptic pencils of minimal degree | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright 2020 The Authors | en_US |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |
dc.identifier.doi | 10.1007/s10711-020-00565-z | |
dc.identifier.cristin | 1861567 | |
dc.source.journal | Geometriae Dedicata | en_US |
dc.identifier.citation | Geometriae Dedicata. 2020 | en_US |