Vis enkel innførsel

dc.contributor.authorGauteplass, Jarand
dc.contributor.authorAlmenningen, Stian
dc.contributor.authorErsland, Geir
dc.date.accessioned2021-05-10T12:14:34Z
dc.date.available2021-05-10T12:14:34Z
dc.date.created2020-05-13T15:29:47Z
dc.date.issued2020
dc.PublishedE3S Web of Conferences. 2020, 146 .
dc.identifier.issn2267-1242
dc.identifier.urihttps://hdl.handle.net/11250/2754675
dc.description.abstractA recent proposed carbon dioxide (CO2) storage scheme suggests solid CO2 hydrate formation at the base of the hydrate stability zone to facilitate safe, long-term storage of anthropogenic CO2. These high-density hydrate structures consist of individual CO2 molecules confined in cages of hydrogen-bonded water molecules. Solid-state storage of CO2 in shallow aquifers can improve the storage capacity greatly compared to supercritical CO2 stored at greater depths. Moreover, impermeable hydrate layers directly above a liquid CO2 plume will significantly retain unwanted migration of CO2 toward the seabed. Thus, a structural trap accompanied by hydrate layers in a zone of favorable kinetics are likely to mitigate the overall risk of CO2 leakage from the storage site. Geophysical monitoring of the CO2 storage site includes electrical resistivity measurements that relies on empirical data to obtain saturation values. We have estimated the saturation exponent in Archie’s equation, n ≈ 2.1 (harmonic mean) for CO2 and brine saturated pore network, and for hydrate-bearing seal (SH < 0.4), during the process of storing liquid CO2 in Bentheimer sandstone core samples. Our findings support efficient trapping of CO2 by sedimentary hydrate formation and show a robust agreement between saturation values derived from PVT data and from modifying Archie’s equation.en_US
dc.language.isoengen_US
dc.publisherEDP Openen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleStoring CO2 as solid hydrate in shallow aquifers: Electrical resistivity measurements in hydrate-bearing sandstoneen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright The Authorsen_US
dc.source.articlenumber05002en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1051/e3sconf/202014605002
dc.identifier.cristin1810828
dc.source.journalE3S Web of Conferencesen_US
dc.source.40146
dc.identifier.citationE3S Web of Conferences. 2020, 146, 05002.en_US
dc.source.volume146en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal