Vis enkel innførsel

dc.contributor.authorAgrawal, Akanksha
dc.contributor.authorFomin, Fedor
dc.contributor.authorLokshtanov, Daniel
dc.contributor.authorSaurabh, Saket
dc.contributor.authorTale, Prafullkumar
dc.date.accessioned2021-05-18T11:30:42Z
dc.date.available2021-05-18T11:30:42Z
dc.date.created2021-01-12T16:00:51Z
dc.date.issued2020
dc.PublishedSIAM Journal on Discrete Mathematics. 2020, 34 1302-1325.
dc.identifier.issn0895-4801
dc.identifier.urihttps://hdl.handle.net/11250/2755454
dc.description.abstractA graph $G$ is contractible to a graph $H$ if there is a set $X \subseteq E(G)$, such that $G/X$ is isomorphic to $H$. Here, $G/X$ is the graph obtained from $G$ by contracting all the edges in $X$. For a family of graphs $\cal F$, the $\mathcal{F}$-Contraction problem takes as input a graph $G$ on $n$ vertices, and the objective is to output the largest integer $t$, such that $G$ is contractible to a graph $H \in {\cal F}$, where $|V(H)|=t$. When $\cal F$ is the family of paths, then the corresponding $\mathcal{F}$-Contraction problem is called Path Contraction. The problem Path Contraction admits a simple algorithm running in time $2^{n}\cdot n^{{\mathcal{O}}(1)}$. In spite of the deceptive simplicity of the problem, beating the $2^{n}\cdot n^{{\mathcal{O}}(1)}$ bound for Path Contraction seems quite challenging. In this paper, we design an exact exponential time algorithm for Path Contraction that runs in time ${{1.99987}^n}\cdot n^{{\mathcal O}(1)}$. We also define a problem called 3-Disjoint Connected Subgraphs and design an algorithm for it that runs in time $1.88^n\cdot n^{{\mathcal O}(1)}$. The above algorithm is used as a subroutine in our algorithm for Path Contraction.en_US
dc.language.isoengen_US
dc.publisherSIAMen_US
dc.titlePath contraction faster than $2^n$en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 Society for Industrial and Applied Mathematicsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1137/19M1259638
dc.identifier.cristin1870029
dc.source.journalSIAM Journal on Discrete Mathematicsen_US
dc.source.4034
dc.source.pagenumber1302-1325en_US
dc.relation.projectNorges forskningsråd: 263317en_US
dc.identifier.citationSIAM Journal on Discrete Mathematics. 2020, 34(2), 1302–1325en_US
dc.source.volume34en_US
dc.source.issue2en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel