The differential spectrum of a ternary power mapping
Journal article, Peer reviewed
Accepted version
View/ Open
Date
2020Metadata
Show full item recordCollections
- Department of Informatics [982]
- Registrations from Cristin [10482]
Abstract
A function f(x)from the finite field GF(pn)to itself is said to be differentially δ-uniform when the maximum number of solutions x ∈GF(pn)of f(x +a) −f(x) =bfor any a ∈GF(pn)∗and b ∈GF(pn)is equal to δ. Let p =3and d =3n−3. When n >1is odd, the power mapping f(x) =xdover GF(3n)was proved to be differentially 2-uniform by Helleseth, Rong and Sandberg in 1999. Fo r even n, they showed that the differential uniformity Δfof f(x)satisfies 1 ≤Δf≤5. In this paper, we present more precise results on the differential property of this power mapping. Fo r d =3n−3with even n >2, we show that the power mapping xdover GF(3n)is differentially 4-uniform when n ≡2 (mod 4) and is differentially 5-uniform when n ≡0 (mod 4). Furthermore, we determine the differential spectrum of xdfor any integer n >1.