Vis enkel innførsel

dc.contributor.authorBeinlich, Andreas
dc.contributor.authorPlumper, Oliver
dc.contributor.authorBoter, Esmee
dc.contributor.authorMüller, Inigo A.
dc.contributor.authorKourim, Fatma
dc.contributor.authorZiegler, Martin
dc.contributor.authorHarigane, Yumiko
dc.contributor.authorLafay, Romain
dc.contributor.authorKelemen, Peter B.
dc.date.accessioned2021-08-05T11:36:44Z
dc.date.available2021-08-05T11:36:44Z
dc.date.created2020-12-08T11:43:57Z
dc.date.issued2020
dc.identifier.issn2169-9313
dc.identifier.urihttps://hdl.handle.net/11250/2766497
dc.description.abstractThe occurrence of the quartz-carbonate alteration assemblage (listvenite) in ophiolites indicates that ultramafic rock represents an effective sink for dissolved CO2. However, the majority of earlier studies of ultramafic rock carbonation had to rely on the surface exposure of reaction textures and field relationships. Here we present the first observations on ultramafic rock alteration obtained from the 300 m deep BT1B drill hole, ICDP Oman Drilling Project, allowing for a continuous and high-resolution investigation. Hole BT1B recovered continuous drill core intersecting surface alluvium, 200 m of altered ultramafic rock comprising mainly listvenite and minor serpentinite bands at 90 and 180 m depth, and 100 m of the underlying metamorphic sole. Textural evidence suggests that the carbonation of fully serpentinized harzburgite commenced by non-equilibrium growth of spheroidal carbonate characterized by sectorial zoning resulting from radially oriented low-angle boundaries. In the serpentinite, carbonate spheroids are composed of alternating magnesite cores and dolomite rims, whereas texturally similar carbonate in the listvenite is composed of Fe-rich magnesite cores and Ca-Fe-rich magnesite rims. The distinct compositions and mineral inclusions indicate that the carbonation extent was controlled by fluid accessibility resulting in the simultaneous formation of limited carbonate in the serpentinite bands and complete carbonation in the listvenite parts of BT1B. The presence of euhedral magnesite overgrowing spheroidal carbonate in the listvenite suggests near-equilibrium conditions during the final stage of carbonation. The carbonate clumped isotope thermometry constrains carbonate crystallization between 50 °C and 250 °C, implying repeated infiltration of reactive fluids during ophiolite uplift and cooling.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleUltramafic rock carbonation: Constraints from listvenite core BT1B, Oman Drilling Projecten_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2020 The Authorsen_US
dc.source.articlenumbere2019JB019060en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2019JB019060
dc.identifier.cristin1857360
dc.source.journalJournal of Geophysical Research (JGR): Solid Earthen_US
dc.identifier.citationJournal of Geophysical Research (JGR): Solid Earth. 2020, 125, e2019JB019060.en_US
dc.source.volume125en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal