Show simple item record

dc.contributor.authorNascimento, Daniel L.
dc.contributor.authorFoscato, Marco
dc.contributor.authorOcchipinti, Giovanni
dc.contributor.authorJensen, Vidar Remi
dc.contributor.authorFogg, Deryn Elizabeth
dc.date.accessioned2021-09-29T10:27:53Z
dc.date.available2021-09-29T10:27:53Z
dc.date.created2021-09-28T10:26:50Z
dc.date.issued2021
dc.identifier.issn0002-7863
dc.identifier.urihttps://hdl.handle.net/11250/2785971
dc.description.abstractBimolecular catalyst decomposition is a fundamental, long-standing challenge in olefin metathesis. Emerging ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, which enable breakthrough advances in productivity and general robustness, are now known to be extraordinarily susceptible to this pathway. The details of the process, however, have hitherto been obscure. The present study provides the first detailed mechanistic insights into the steric and electronic factors that govern bimolecular decomposition. Described is a combined experimental and theoretical study that probes decomposition of the key active species, RuCl2(L)(py)(═CH2) 1 (in which L is the N-heterocyclic carbene (NHC) H2IMes, or a CAAC ligand: the latter vary in the NAr group (NMes, N-2,6-Et2C6H3, or N-2-Me,6-iPrC6H3) and the substituents on the quaternary site flanking the carbene carbon (i.e., CMe2 or CMePh)). The transiently stabilized pyridine adducts 1 were isolated by cryogenic synthesis of the metallacyclobutanes, addition of pyridine, and precipitation. All are shown to decompose via second-order kinetics at −10 °C. The most vulnerable CAAC species, however, decompose more than 1000-fold faster than the H2IMes analogue. Computational studies reveal that the key factor underlying accelerated decomposition of the CAAC derivatives is their stronger trans influence, which weakens the Ru−py bond and increases the transient concentration of the 14-electron methylidene species, RuCl2(L)(═CH2) 2. Fast catalyst initiation, a major design goal in olefin metathesis, thus has the negative consequence of accelerating decomposition. Inhibiting bimolecular decomposition offers major opportunities to transform catalyst productivity and utility, and to realize the outstanding promise of olefin metathesis.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleBimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium−Carbene Catalystsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.doi10.1021/jacs.1c04424
dc.identifier.cristin1939566
dc.source.journalJournal of the American Chemical Societyen_US
dc.source.pagenumber11072–11079en_US
dc.relation.projectNorges forskningsråd: 262370en_US
dc.relation.projectNorges forskningsråd: 226244en_US
dc.relation.projectNorges forskningsråd: 288135en_US
dc.relation.projectNotur/NorStore: NS2506Ken_US
dc.relation.projectNotur/NorStore: NN2506Ken_US
dc.identifier.citationJournal of the American Chemical Society. 2021, 143, 29, 11072–11079.en_US
dc.source.volume143en_US
dc.source.issue29en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal