Vis enkel innførsel

dc.contributor.authorIversen, Einar
dc.contributor.authorUrsin, Bjørn
dc.contributor.authorSaksala, Teemu
dc.contributor.authorIlmavirta, Joonas
dc.contributor.authorV. de Hoop, Maarten
dc.date.accessioned2021-11-19T09:01:58Z
dc.date.available2021-11-19T09:01:58Z
dc.date.created2021-11-18T17:16:05Z
dc.date.issued2021
dc.identifier.issn0956-540X
dc.identifier.urihttps://hdl.handle.net/11250/2830415
dc.description.abstractDynamic ray tracing is a robust and efficient method for computation of amplitude and phase attributes of the high-frequency Green’s function. A formulation of dynamic ray tracing in Cartesian coordinates was recently extended to higher orders. Extrapolation of traveltime and geometrical spreading was demonstrated to yield significantly higher accuracy—for isotropic as well as anisotropic heterogeneous 3-D models of an elastic medium. This is of value in mapping, modelling and imaging, where kernel operations are based on extrapolation or interpolation of Green’s function attributes to densely sampled 3-D grids. We introduce higher-order dynamic ray tracing in ray-centred coordinates, which has certain advantages: (1) such coordinates fit naturally with wave propagation; (2) they lead to a reduction of the number of ordinary differential equations; (3) the initial conditions are simple and intuitive and (4) numerical errors due to redundancies are less likely to influence the computation of the Green’s function attributes. In a 3-D numerical example, we demonstrate that paraxial extrapolation based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly consistent with those obtained using Cartesian coordinates. Furthermore, in a 2-D example we show that interpolation of dynamic ray tracing quantities along a wavefront can be done with much better consistency in ray-centred coordinates than in Cartesian coordinates. In both examples we measure consistency by means of constraints on the dynamic ray tracing quantities in the 3-D position space and in the 6-D phase space.en_US
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.subjectSeismologien_US
dc.subjectSeismologyen_US
dc.subjectAnvendt geofysikken_US
dc.subjectApplied geophysicsen_US
dc.subjectBølgeteorien_US
dc.subjectWave theoryen_US
dc.titleHigher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: dynamic ray tracing in ray-centred coordinatesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1093/gji/ggab152
dc.identifier.cristin1956118
dc.source.journalGeophysical Journal Internationalen_US
dc.source.pagenumber1262-1307en_US
dc.subject.nsiVDP::Faste jords fysikk: 451en_US
dc.subject.nsiVDP::Solid earth physics: 451en_US
dc.identifier.citationGeophysical Journal International. 2021, 226 (2), 1262-1307.en_US
dc.source.volume226en_US
dc.source.issue2en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel