Fixed cardinality stable sets
Journal article, Peer reviewed
Published version
View/ Open
Date
2021Metadata
Show full item recordCollections
- Department of Informatics [999]
- Registrations from Cristin [11068]
Abstract
Given an undirected graph G=(V,E) and a positive integer k in {1, ..., |V|}, we initiate the combinatorial study of stable sets of cardinality exactly k in G. Our aim is to instigate the polyhedral investigation of the convex hull of fixed cardinality stable sets, inspired by the rich theory on the classical structure of stable sets. We introduce a large class of valid inequalities to the natural integer programming formulation of the problem. We also present simple combinatorial relaxations based on computing maximum weighted matchings, which yield dual bounds towards finding minimum-weight fixed cardinality stable sets, and particular cases which are solvable in polynomial time.