dc.contributor.author | Fomin, Fedor | |
dc.contributor.author | Golovach, Petr | |
dc.date.accessioned | 2022-01-31T13:42:24Z | |
dc.date.available | 2022-01-31T13:42:24Z | |
dc.date.created | 2022-01-06T10:38:02Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0895-4801 | |
dc.identifier.uri | https://hdl.handle.net/11250/2976048 | |
dc.description.abstract | A fundamental theorem of Whitney from 1933 asserts that 2-connected graphs $G$ and $H$ are 2-isomorphic, or equivalently, their cycle matroids are isomorphic if and only if $G$ can be transformed into $H$ by a series of operations called Whitney switches. In this paper we consider the quantitative question arising from Whitney's theorem: Given two 2-isomorphic graphs, can we transform one into another by applying at most $k$ Whitney switches? This problem is already \sf NP-complete for cycles, and we investigate its parameterized complexity. We show that the problem admits a kernel of size $\mathcal{O}(k)$ and thus is fixed-parameter tractable when parameterized by $k$. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SIAM | en_US |
dc.title | Kernelization of Whitney Switches | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright 2021 Society for Industrial and Applied Mathematics | en_US |
cristin.ispublished | true | |
cristin.fulltext | preprint | |
cristin.qualitycode | 1 | |
dc.identifier.doi | https://doi.org/10.1137/20M1367519 | |
dc.identifier.cristin | 1975700 | |
dc.source.journal | SIAM Journal on Discrete Mathematics | en_US |
dc.source.pagenumber | 1298-1336 | en_US |
dc.relation.project | Norges forskningsråd: 263317 | en_US |
dc.identifier.citation | SIAM Journal on Discrete Mathematics. 2021, 35 (2), 1298-1336. | en_US |
dc.source.volume | 35 | en_US |
dc.source.issue | 2 | en_US |