• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • University of Bergen Library
  • Registrations from Cristin
  • Vis innførsel
  •   Hjem
  • University of Bergen Library
  • Registrations from Cristin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Linear Domain Decomposition Schemes for Reduced Nonlinear Fracture Flow Models

Ahmed, Elyes; Fumagalli, Alessio; Budisa, Ana; Keilegavlen, Eirik; Nordbotten, Jan Martin; Radu, Adrian Florin
Journal article, Peer reviewed
Published version
Thumbnail
Åpne
PDF (3.921Mb)
Permanent lenke
https://hdl.handle.net/11250/2985571
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Department of Mathematics [1038]
  • Registrations from Cristin [12724]
Originalversjon
SIAM Journal on Numerical Analysis. 2021, 59 (1), 583-612.   10.1137/19M1268392
Sammendrag
In this work, we consider compressible single-phase flow problems in a porous medium containing a fracture. In the fracture, a nonlinear pressure-velocity relation is prescribed. Using a non-overlapping domain decomposition procedure, we reformulate the global problem into a nonlinear interface problem. We then introduce two new algorithms that are able to efficiently handle the nonlinearity and the coupling between the fracture and the matrix, both based on linearization by the so-called L-scheme. The first algorithm, named MoLDD, uses the L-scheme to resolve for the nonlinearity, requiring at each iteration to solve the dimensional coupling via a domain decomposition approach. The second algorithm, called ItLDD, uses a sequential approach in which the dimensional coupling is part of the linearization iterations. For both algorithms, the computations are reduced only to the fracture by precomputing, in an offline phase, a multiscale flux basis (the linear Robin-to-Neumann codimensional map), that represent the flux exchange between the fracture and the matrix. We present extensive theoretical findings X and in particular, t. The stability and the convergence of both schemes are obtained, where user-given parameters are optimized to minimize the number of iterations. Examples on two important fracture models are computed with the library PorePy and agree with the developed theory.
Utgiver
SIAM
Tidsskrift
SIAM Journal on Numerical Analysis
Opphavsrett
Copyright 2021 Society for Industrial and Applied Mathematics

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit