Vis enkel innførsel

dc.contributor.authorMcGranaghan, Ryan M.
dc.contributor.authorZiegler, Jack
dc.contributor.authorBloch, Téo
dc.contributor.authorHatch, Spencer Mark
dc.contributor.authorCamporeale, Enrico
dc.contributor.authorLynch, Kristina
dc.contributor.authorOwens, Mathew
dc.contributor.authorGjerløv, Jesper
dc.contributor.authorZhang, Binzheng
dc.contributor.authorSkone, Susan
dc.date.accessioned2022-03-16T13:53:56Z
dc.date.available2022-03-16T13:53:56Z
dc.date.created2022-01-27T14:22:13Z
dc.date.issued2021
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/11250/2985614
dc.description.abstractWe advance the modeling capability of electron particle precipitation from the magnetosphere to the ionosphere through a new database and use of machine learning (ML) tools to gain utility from those data. We have compiled, curated, analyzed, and made available a new and more capable database of particle precipitation data that includes 51 satellite years of Defense Meteorological Satellite Program (DMSP) observations temporally aligned with solar wind and geomagnetic activity data. The new total electron energy flux particle precipitation nowcast model, a neural network called PrecipNet, takes advantage of increased expressive power afforded by ML approaches to appropriately utilize diverse information from the solar wind and geomagnetic activity and, importantly, their time histories. With a more capable representation of the organizing parameters and the target electron energy flux observations, PrecipNet achieves a >50% reduction in errors from a current state-of-the-art model oval variation, assessment, tracking, intensity, and online nowcasting (OVATION Prime), better captures the dynamic changes of the auroral flux, and provides evidence that it can capably reconstruct mesoscale phenomena. We create and apply a new framework for space weather model evaluation that culminates previous guidance from across the solar-terrestrial research community. The research approach and results are representative of the “new frontier” of space weather research at the intersection of traditional and data science-driven discovery and provides a foundation for future efforts.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleToward a Next Generation Particle Precipitation Model: Mesoscale Prediction Through Machine Learning (a Case Study and Framework for Progress)en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021. The Authorsen_US
dc.source.articlenumbere2020SW002684en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1029/2020SW002684
dc.identifier.cristin1991450
dc.source.journalSpace Weatheren_US
dc.identifier.citationSpace Weather. 2021, 19 (6), e2020SW002684.en_US
dc.source.volume19en_US
dc.source.issue6en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal