Observation of photon-induced W+W− production in pp collisions at √s = 13 TeV using the ATLAS detector
Aad, Georges; Abbott, Brad; Abbott, Dale C.; Abed Abud, Adam; Abeling, Kira; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; AbouZeid, Ossama Sherif Alexander; Abraham, Nadine L.; Abramowicz, Halina; Bjørke, Kristian; Bugge, Magnar Kopangen; Cameron, David Gordon; Catmore, James Richard; Garonne, Vincent; Gramstad, Eirik; Heggelund, Andreas; Hellesund, Simen; Håland, Even Simonsen; Morisbak, Vanja; Oppen, Henrik; Ould-Saada, Farid; Pedersen, Maiken; Read, Alexander Lincoln; Rye, Eli Bæverfjord; Røhne, Ole Myren; Sandaker, Heidi; Vadla, Knut Oddvar Høie; Buanes, Trygve; Djuvsland, Julia Isabell; Eigen, Gerald; Fomin, Nikolai; Latour, Bertrand Pascal Christian; Lee, Graham Richard; Lipniacka, Anna; Stugu, Bjarne Sandvik; Træet, Are Sivertsen; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby S.; Achkar, Baida; Adam, Lennart; Adam-Bourdarios, Claire; Adamczyk, Leszek; Adamek, Lukas; Adelman, Jareed; Adigüzel, Aytül; Adorni, Sofia; Adye, Tim; Affolder, Anthony Allen; ATLAS, Collaboration
Journal article, Peer reviewed
Published version

View/ Open
Date
2021Metadata
Show full item recordCollections
- Department of Physics and Technology [2244]
- Registrations from Cristin [12206]
Abstract
This letter reports the observation of photon-induced production of W -boson pairs, γγ → W W . The analysis uses 139 fb−1 of LHC proton–proton collision data taken at √s = 13 TeV recorded by the ATLAS experiment during the years 2015–2018. The measurement is performed selecting one electron and one muon, corresponding to the decay of the diboson system as W W → e±νμ∓ν final state. The background-only hypothesis is rejected with a significance of well above 5 standard deviations consistent with the expectation from Monte Carlo simulation. A cross section for the γγ → W W process of 3.13±0.31(stat.)±0.28(syst.) fb is measured in a fiducial volume close to the acceptance of the detector, by requiring an electron and a muon of opposite signs with large dilepton transverse momentum and exactly zero additional charged particles. This is found to be in agreement with the Standard Model prediction.