A novel moderately thermophilic facultative methylotroph within the class Alphaproteobacteria
Journal article, Peer reviewed
Published version
Åpne
Permanent lenke
https://hdl.handle.net/11250/2988923Utgivelsesdato
2021-02-25Metadata
Vis full innførselSamlinger
- Department of Biological Sciences [2378]
- Registrations from Cristin [11151]
Sammendrag
Methylotrophic bacteria (non-methanotrophic methanol oxidizers) consuming reduced carbon compounds containing no carbon–carbon bonds as their sole carbon and energy source have been found in a great variety of environments. Here, we report a unique moderately thermophilic methanol-oxidising bacterium (strain LS7-MT) that grows optimally at 55 °C (with a growth range spanning 30 to 60 °C). The pure isolate was recovered from a methane-utilizing mixed culture enrichment from an alkaline thermal spring in the Ethiopia Rift Valley, and utilized methanol, methylamine, glucose and a variety of multi-carbon compounds. Phylogenetic analysis of the 16S rRNA gene sequences demonstrated that strain LS7-MT represented a new facultatively methylotrophic bacterium within the order Hyphomicrobiales of the class Alphaproteobacteria. This new strain showed 94 to 96% 16S rRNA gene identity to the two methylotroph genera, Methyloceanibacter and Methyloligella. Analysis of the draft genome of strain LS7-MT revealed genes for methanol dehydrogenase, essential for methanol oxidation. Functional and comparative genomics of this new isolate revealed genomic and physiological divergence from extant methylotrophs. Strain LS7-MT contained a complete mxaF gene cluster and xoxF1 encoding the lanthanide-dependent methanol dehydrogenase (XoxF). This is the first report of methanol oxidation at 55 °C by a moderately thermophilic bacterium within the class Alphaproteobacteria. These findings expand our knowledge of methylotrophy by the phylum Proteobacteria in thermal ecosystems and their contribution to global carbon and nitrogen cycles.