Vis enkel innførsel

dc.contributor.authorBernadskaya, Yelena Y.
dc.contributor.authorYue, Haicen
dc.contributor.authorCopos, Calina
dc.contributor.authorChristiaen, Lionel
dc.contributor.authorMogilner, Alex
dc.date.accessioned2022-04-01T09:52:39Z
dc.date.available2022-04-01T09:52:39Z
dc.date.created2022-01-04T20:57:53Z
dc.date.issued2021
dc.identifier.issn2050-084X
dc.identifier.urihttps://hdl.handle.net/11250/2989194
dc.description.abstractPhysiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue-scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.en_US
dc.language.isoengen_US
dc.publishereLife Sciences Publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSupracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cellsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 the authorsen_US
dc.source.articlenumbere70977en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.7554/eLife.70977
dc.identifier.cristin1974768
dc.source.journaleLIFEen_US
dc.identifier.citationeLIFE. 2021, 10, e70977.en_US
dc.source.volume10en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal