Vis enkel innførsel

dc.contributor.authorSharma, Suraj
dc.contributor.authorHsieh, Yin-Chen
dc.contributor.authorDietze, Jørn
dc.contributor.authorBockwoldt, Mathias
dc.contributor.authorStrømland, Øyvind
dc.contributor.authorZiegler, Mathias
dc.contributor.authorHeiland, Ines
dc.date.accessioned2022-08-15T08:02:38Z
dc.date.available2022-08-15T08:02:38Z
dc.date.created2022-08-13T13:11:54Z
dc.date.issued2022
dc.identifier.issn2218-1989
dc.identifier.urihttps://hdl.handle.net/11250/3011763
dc.description.abstractBacteria use two alternative pathways to synthesize nicotinamide adenine dinucleotide (NAD) from nicotinamide (Nam). A short, two-step route proceeds through nicotinamide mononucleotide (NMN) formation, whereas the other pathway, a four-step route, includes the deamidation of Nam and the reamidation of nicotinic acid adenine dinucleotide (NAAD) to NAD. In addition to having twice as many enzymatic steps, the four-step route appears energetically unfavourable, because the amidation of NAAD includes the cleavage of ATP to AMP. Therefore, it is surprising that this pathway is prevalent not only in bacteria but also in yeast and plants. Here, we demonstrate that the considerably higher chemical stability of the deamidated intermediates, compared with their amidated counterparts, might compensate for the additional energy expenditure, at least at elevated temperatures. Moreover, comprehensive bioinformatics analyses of the available >6000 bacterial genomes indicate that an early selection of one or the other pathway occurred. The mathematical modelling of the NAD pathway dynamics supports this hypothesis, as there appear to be no advantages in having both pathwaysen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEarly Evolutionary Selection of NAD Biosynthesis Pathway in Bacteriaen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumber569en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3390/metabo12070569
dc.identifier.cristin2042795
dc.source.journalMetabolitesen_US
dc.relation.projectNorges forskningsråd: 315849en_US
dc.relation.projectNorges forskningsråd: 302314en_US
dc.relation.projectNorges forskningsråd: 226244en_US
dc.relation.projectNorges forskningsråd: 228107en_US
dc.relation.projectNorges forskningsråd: 325172en_US
dc.identifier.citationMetabolites. 2022, 12(7), 569.en_US
dc.source.volume12en_US
dc.source.issue7en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal