dc.contributor.author | Baudoin, Fabrice | |
dc.contributor.author | Grong, Erlend | |
dc.contributor.author | Vega-Molino, Gianmarco | |
dc.date.accessioned | 2022-08-26T11:48:45Z | |
dc.date.available | 2022-08-26T11:48:45Z | |
dc.date.created | 2022-05-19T12:38:47Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0232-704X | |
dc.identifier.uri | https://hdl.handle.net/11250/3013783 | |
dc.description.abstract | Under suitable conditions, we show that the Euler characteristic of a foliated Riemannian manifold can be computed only from curvature invariants which are transverse to the leaves. Our proof uses the hypoelliptic sub-Laplacian on forms recently introduced by two of the authors in Baudoin and Grong (Ann Glob Anal Geom 56(2):403–428, 2019). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | A horizontal Chern–Gauss–Bonnet formula on totally geodesic foliations | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright The Author(s) 2022 | en_US |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 1 | |
dc.identifier.doi | 10.1007/s10455-022-09827-3 | |
dc.identifier.cristin | 2025601 | |
dc.source.journal | Annals of Global Analysis and Geometry | en_US |
dc.source.pagenumber | 759-776 | en_US |
dc.identifier.citation | Annals of Global Analysis and Geometry. 2022, 61, 759-776. | en_US |
dc.source.volume | 61 | en_US |