NPM1-Mutated Patient-Derived AML Cells Are More Vulnerable to Rac1 Inhibition
Journal article, Peer reviewed
Published version
View/ Open
Date
2022Metadata
Show full item recordCollections
- Department of Clinical Science [2437]
- Registrations from Cristin [10772]
Abstract
The prognosis of acute myeloid leukemia (AML) is poor, especially for the elderly population. Targeted therapy with small molecules may be a potential strategy to overcome chemoresistance and improve survival in AML. We investigated the inhibition of the signaling molecule ras-related C3 botulinum toxin substrate 1 (Rac1) in leukemia cells derived from 79 consecutive AML patients, using five Rac1 inhibitors: ZINC69391, ITX3, EHOP-016, 1A-116, and NSC23766. In vitro cell proliferation and apoptosis assays and the assessment of cytokine profiles in culture media were conducted. All five inhibitors had an antiproliferative effect; IC50 ranged from 3–24 µM. They induced significant apoptosis and necrosis compared to the untreated controls (p < 0.0001) at concentrations around IC40 and IC80. A high versus an intermediate or low antiproliferative effect was more common in NPM1-mutated (p = 0.002) and CD34-negative (p = 0.008) samples, and when NPM1 and FLT3 (p = 0.027) were combined. Presence of NPM1 mutation was associated with reduced viability after treatment with EHOP-016 (p = 0.014), ITX3 (p = 0.047), and NSC23766 (p = 0.003). Several cytokines crucial for leukemogenesis were reduced after culture, with the strongest effects observed for 1A-116 and NSC23766. Our findings suggest potent effects of Rac1 inhibition in primary AML cells and, interestingly, samples harboring NPM1 mutation seem more vulnerable.