Vis enkel innførsel

dc.contributor.authorBabu, Eldho Midhun
dc.contributor.authorTyssøy, Hilde Nesse
dc.contributor.authorSmith-Johnsen, Christine
dc.contributor.authorMaliniemi, Ville Aleksi
dc.contributor.authorSalice, Josephine Alessandra
dc.contributor.authorMillan, R.M.
dc.contributor.authorRichardson, I.G.
dc.date.accessioned2022-10-25T13:23:05Z
dc.date.available2022-10-25T13:23:05Z
dc.date.created2022-10-17T17:43:38Z
dc.date.issued2022
dc.identifier.issn2169-9380
dc.identifier.urihttps://hdl.handle.net/11250/3028223
dc.description.abstractEnergetic Electron Precipitation (EEP) from the plasma sheet and the radiation belts ionizes the polar lower thermosphere and mesosphere. EEP increases the production of NOx and HOx, which will catalytically destroy ozone, an important element of atmospheric dynamics. Therefore, measurement of the latitudinal extent of the precipitation boundaries is important in quantifying the atmospheric effects of the Sun-Earth interaction. This study uses measurements by the Medium Energy Proton Electron Detector (MEPED) of six NOAA/POES and EUMETSAT/METOP satellites from 2004 to 2014 to determine the latitudinal boundaries of EEP and their variability with geomagnetic activity and solar wind drivers. Variation of the boundaries for different electron energies and Magnetic Local Time (MLT) is studied. Regression analyses are applied to determine the best predictor variable based on solar wind parameters and geomagnetic indices. The highest correlation was found for the pressure-corrected Dst index when applying a linear regression model. A model of the equatorward EEP boundary is developed separately for three different energy channels, >43, >114, and >292 keV, and for 3 hour MLT sectors. For >43 keV EEP, 80% of the equatorward boundaries predicted by the model are within ±2.2° cgmlat. The model exhibits a solar cycle bias where it systematically exaggerates the equatorward movement of the EEP region during solar minimum. The highest accuracy of the model is found in periods dominated by corotating interaction regions/high speed solar wind streams. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleDetermining Latitudinal Extent of Energetic Electron Precipitation Using MEPED On-Board NOAA/POESen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
dc.source.articlenumbere2022JA030489en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2022JA030489
dc.identifier.cristin2062188
dc.source.journalJournal of Geophysical Research (JGR): Space Physicsen_US
dc.identifier.citationJournal of Geophysical Research (JGR): Space Physics. 2022, 127 (9), e2022JA030489.en_US
dc.source.volume127en_US
dc.source.issue9en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal