Vis enkel innførsel

dc.contributor.authorOcchipinti, Giovanni
dc.contributor.authorNascimento, Daniel L.
dc.contributor.authorFoscato, Marco
dc.contributor.authorFogg, Deryn Elizabeth
dc.contributor.authorJensen, Vidar Remi
dc.date.accessioned2022-12-12T12:40:09Z
dc.date.available2022-12-12T12:40:09Z
dc.date.created2022-10-19T11:03:01Z
dc.date.issued2022
dc.identifier.issn2041-6520
dc.identifier.urihttps://hdl.handle.net/11250/3037274
dc.description.abstractRuthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits β-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cβ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting β-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decompositionen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1039/d2sc00855f
dc.identifier.cristin2062685
dc.source.journalChemical Scienceen_US
dc.source.pagenumber5107-5117en_US
dc.relation.projectNorges forskningsråd: 262370en_US
dc.relation.projectNorges forskningsråd: 288135en_US
dc.relation.projectNorges forskningsråd: 226244en_US
dc.relation.projectSigma2: NN2506Ken_US
dc.relation.projectSigma2: NS2506Ken_US
dc.identifier.citationChemical Science. 2022, 13 (18), 5107-5117.en_US
dc.source.volume13en_US
dc.source.issue18en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal