dc.contributor.author | Black, Mitchell | |
dc.contributor.author | Blaser, Nello | |
dc.contributor.author | Nayyeri, Amir | |
dc.contributor.author | Vågset, Erlend Raa | |
dc.date.accessioned | 2022-12-15T14:39:37Z | |
dc.date.available | 2022-12-15T14:39:37Z | |
dc.date.created | 2022-12-01T15:33:02Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-3-95977-227-3 | |
dc.identifier.issn | 1868-8969 | |
dc.identifier.uri | https://hdl.handle.net/11250/3038100 | |
dc.description.abstract | Given a simplicial complex with n simplices, we consider the Connected Subsurface Recognition (c-SR) problem of finding a subcomplex that is homeomorphic to a given connected surface with a fixed boundary. We also study the related Sum-of-Genus Subsurface Recognition (SoG) problem, where we instead search for a surface whose boundary, number of connected components, and total genus are given. For both of these problems, we give parameterized algorithms with respect to the treewidth k of the Hasse diagram that run in 2^{O(k log k)}n^{O(1)} time. For the SoG problem, we also prove that our algorithm is optimal assuming the exponential-time hypothesis. In fact, we prove the stronger result that our algorithm is ETH-tight even without restriction on the total genus. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Schloss Dagstuhl – Leibniz Center for Informatics | en_US |
dc.rights | Navngivelse 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.no | * |
dc.title | ETH-Tight Algorithms for Finding Surfaces in Simplicial Complexes of Bounded Treewidth | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | publishedVersion | en_US |
dc.rights.holder | Copyright 2022 the authors | en_US |
dc.source.articlenumber | 17 | en_US |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |
dc.identifier.doi | 10.4230/LIPIcs.SoCG.2022.17 | |
dc.identifier.cristin | 2087290 | |
dc.source.journal | Leibniz International Proceedings in Informatics | en_US |
dc.relation.project | Norges forskningsråd: 274526 | en_US |
dc.identifier.citation | Leibniz International Proceedings in Informatics. 2022, 224, 17. | en_US |
dc.source.volume | 224 | en_US |