Show simple item record

dc.contributor.authorFomin, Fedor
dc.contributor.authorGolovach, Petr
dc.contributor.authorInamdar, Tanmay Nitin
dc.contributor.authorPurohit, Nidhi
dc.contributor.authorSaurabh, Saket
dc.date.accessioned2023-01-10T07:53:33Z
dc.date.available2023-01-10T07:53:33Z
dc.date.created2023-01-03T16:21:46Z
dc.date.issued2022
dc.identifier.issn1868-8969
dc.identifier.urihttps://hdl.handle.net/11250/3042138
dc.description.abstractIn this paper we initiate a systematic study of exact algorithms for some of the well known clustering problems, namely k-MEDIAN and k-MEANS. In k-MEDIAN, the input consists of a set X of n points belonging to a metric space, and the task is to select a subset C ⊆ X of k points as centers, such that the sum of the distances of every point to its nearest center is minimized. In k-MEANS, the objective is to minimize the sum of squares of the distances instead. It is easy to design an algorithm running in time max_{k ≤ n} {n choose k} n^𝒪(1) = 𝒪^*(2ⁿ) (here, 𝒪^*(⋅) notation hides polynomial factors in n). In this paper we design first non-trivial exact algorithms for these problems. In particular, we obtain an 𝒪^*((1.89)ⁿ) time exact algorithm for k-MEDIAN that works for any value of k. Our algorithm is quite general in that it does not use any properties of the underlying (metric) space - it does not even require the distances to satisfy the triangle inequality. In particular, the same algorithm also works for k-Means. We complement this result by showing that the running time of our algorithm is asymptotically optimal, up to the base of the exponent. That is, unless the Exponential Time Hypothesis fails, there is no algorithm for these problems running in time 2^o(n)⋅n^𝒪(1). Finally, we consider the "facility location" or "supplier" versions of these clustering problems, where, in addition to the set X we are additionally given a set of m candidate centers (or facilities) F, and objective is to find a subset of k centers from F. The goal is still to minimize the k-Median/k-Means/k-Center objective. For these versions we give a 𝒪(2ⁿ (mn)^𝒪(1)) time algorithms using subset convolution. We complement this result by showing that, under the Set Cover Conjecture, the "supplier" versions of these problems do not admit an exact algorithm running in time 2^{(1-ε) n} (mn)^𝒪(1).en_US
dc.language.isoengen_US
dc.publisherSchloss Dagstuhl – Leibniz Center for Informaticsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExact Exponential Algorithms for Clustering Problemsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.4230/LIPIcs.IPEC.2022.13
dc.identifier.cristin2100000
dc.source.journalLeibniz International Proceedings in Informaticsen_US
dc.source.pagenumber13:1-13:14en_US
dc.relation.projectNorges forskningsråd: 314528en_US
dc.relation.projectERC-European Research Council: 819416en_US
dc.identifier.citationLeibniz International Proceedings in Informatics. 2022, 249, 13:1-13:14.en_US
dc.source.volume249en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal