Vis enkel innførsel

dc.contributor.authorTyssøy, Hilde Nesse
dc.contributor.authorSinnhuber, M.
dc.contributor.authorAsikainen, T.
dc.contributor.authorBender, Stefan
dc.contributor.authorClilverd, M.A.
dc.contributor.authorFunke, B.
dc.contributor.authorvan de Kamp, M.
dc.contributor.authorPettit, J.M.
dc.contributor.authorRandall, C.E.
dc.contributor.authorReddmann, T.
dc.contributor.authorRodger, C.J.
dc.contributor.authorRozanov, E.
dc.contributor.authorSmith-Johnsen, Christine
dc.contributor.authorSukhodolov, T.
dc.contributor.authorVerronen, P.T.
dc.contributor.authorWissing, J.M.
dc.contributor.authorYakovchuk, O.
dc.date.accessioned2023-01-11T14:58:31Z
dc.date.available2023-01-11T14:58:31Z
dc.date.created2022-04-28T14:21:39Z
dc.date.issued2022
dc.identifier.issn2169-9380
dc.identifier.urihttps://hdl.handle.net/11250/3042771
dc.description.abstractPrecipitating auroral and radiation belt electrons are considered an important part of the natural forcing of the climate system. Recent studies suggest that this forcing is underestimated in current chemistryclimate models. The High Energy Particle Precipitation in the Atmosphere III intercomparison experiment is a collective effort to address this point. Here, eight different estimates of medium energy electron (MEE) (>30 keV) ionization rates are assessed during a geomagnetic active period in April 2010. The objective is to understand the potential uncertainty related to the MEE energy input. The ionization rates are all based on the Medium Energy Proton and Electron Detector (MEPED) on board the NOAA/POES and EUMETSAT/MetOp spacecraft series. However, different data handling, ionization rate calculations, and background atmospheres result in a wide range of mesospheric electron ionization rates. Although the eight data sets agree well in terms of the temporal variability, they differ by about an order of magnitude in ionization rate strength both during geomagnetic quiet and disturbed periods. The largest spread is found in the aftermath of enhanced geomagnetic activity. Furthermore, governed by different energy limits, the atmospheric penetration depth varies, and some differences related to latitudinal coverage are also evident. The mesospheric NO densities simulated with the Whole Atmospheric Community Climate Model driven by highest and lowest ionization rates differ by more than a factor of eight. In a follow-up study, the atmospheric responses are simulated in four chemistry-climate models (CCM) and compared to satellite observations, considering both the CCM structure and the ionization forcing.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleHEPPA III Intercomparison Experiment on Electron Precipitation Impacts: 1. Estimated Ionization Rates During a Geomagnetic Active Period in April 2010en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 the authorsen_US
dc.source.articlenumbere2021JA029128en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2021JA029128
dc.identifier.cristin2019839
dc.source.journalJournal of Geophysical Research (JGR): Space Physicsen_US
dc.relation.projectNorges forskningsråd: 302040en_US
dc.relation.projectNorges forskningsråd: 223252en_US
dc.identifier.citationJournal of Geophysical Research (JGR): Space Physics. 2022, 127 (1), e2021JA029128.en_US
dc.source.volume127en_US
dc.source.issue1en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal