Vis enkel innførsel

dc.contributor.authorWolf, Lorenz
dc.contributor.authorHuismans, Ritske Sipke
dc.contributor.authorRouby, Delphine
dc.contributor.authorGawthorpe, Rob
dc.contributor.authorWolf, Sebastian Georg
dc.date.accessioned2023-02-14T13:06:46Z
dc.date.available2023-02-14T13:06:46Z
dc.date.created2022-05-01T13:26:34Z
dc.date.issued2022
dc.identifier.issn2169-9313
dc.identifier.urihttps://hdl.handle.net/11250/3050744
dc.description.abstractContinental rifts form by extension, and their subsequent evolution depends on the tectonic and climatic boundary conditions. We investigate how faulting, topography, and the evolution of the sediment flux during rifting are affected by these boundary conditions, in particular whether it is possible to correlate tectonic activity, topography, and sediment flux on long timescales (40 Myr). We use a thermomechanical model coupled with a landscape evolution model and present a series of 14 models, testing the sensitivity of the models to crustal strength, extension rate, and fluvial erodibility. The degree of strain localization drives the structural evolution of the modeled rifts: slow extension, high crustal strength, and efficient surface processes promote a high degree of strain localization, resulting in fewer active faults with larger offset. Overall, the magnitude of sediment production correlates with the degree of strain localization. In case of unchanged erosional power and similar amount of extension, systems with slower extension produce more sediment owing to a stronger positive feedback between erosion and fault offset. We observe a characteristic sequence of events, reflecting the morpho-tectonic evolution of rifts: the highest rock uplift rates are observed before the maximum elevation, and the highest sediment flux postdates the peak in elevation. Our results indicate that for natural systems, the evolution of the sediment flux is a good proxy for the evolution of topography, and that a time lag of 2–5 Myr between the peaks in main tectonic activity and sediment flux can exist.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleLinks Between Faulting, Topography, and Sediment Production During Continental Rifting: Insights From Coupled Surface Process, Thermomechanical Modelingen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumbere2021JB023490en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2021JB023490
dc.identifier.cristin2020399
dc.source.journalJournal of Geophysical Research (JGR): Solid Earthen_US
dc.relation.projectSigma2: NN4704Ken_US
dc.relation.projectSigma2: NS4704Ken_US
dc.identifier.citationJournal of Geophysical Research (JGR): Solid Earth. 2022, 127 (3), e2021JB023490.en_US
dc.source.volume127en_US
dc.source.issue3en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal