Vis enkel innførsel

dc.contributor.authorPichel, Leonardo Muniz
dc.contributor.authorHuismans, Ritske Sipke
dc.contributor.authorGawthorpe, Rob
dc.contributor.authorFaleide, Jan Inge
dc.contributor.authorTheunissen, Thomas Louis Roger Dominique
dc.date.accessioned2023-02-14T13:30:33Z
dc.date.available2023-02-14T13:30:33Z
dc.date.created2022-11-19T14:17:52Z
dc.date.issued2022
dc.identifier.issn2169-9313
dc.identifier.urihttps://hdl.handle.net/11250/3050761
dc.description.abstractContinental rifted margins are often associated with widespread, thick evaporite (i.e., salt) deposits and pronounced salt tectonics. The majority of salt basins formed during the latest stages of rifting, prior to continental breakup. We use 2D thermo-mechanical finite element modeling of lithospheric extension to investigate the interplay between rifted margin architecture, late syn-rift salt deposition, and post-rift salt tectonics. We focus on four different types of continental margins: (a) narrow, (b) intermediate, (c) wide, and (d) ultra-wide margins. We evaluate the: (a) interplay between laterally variable syn-rift extension, salt deposition and salt tectonics, (b) influence of syn-rift basin architecture on post-rift salt flow, (c) spatial and temporal distribution of salt-related structural domains, and (d) contrasting styles of salt tectonics for different margin types. Narrow and intermediate margins form partially isolated salt basins associated with prominent base-salt relief, limited translation but significant diapirism, and minibasin development. Wide and ultra-wide margins form wide salt basins with subtle base-salt relief that results in significant seaward salt expulsion and overburden translation. These wide margins demonstrate significant updip extension with the development of post-rift normal faults and rollovers, mid-margin translation associated with complex diapirism and downdip diapir shortening. All margins contain a distal salt nappe that varies in width and complexity. We also test the effect of different salt viscosities, relative post-salt progradation rates, and pre-salt sediment thicknesses. The results are comparable to several examples of salt-bearing rifted margins and improve our understanding of their dynamics and on the controls on their salt tectonics variability.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleCoupling Crustal-Scale Rift Architecture With Passive Margin Salt Tectonics: A Geodynamic Modeling Approachen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumbere2022JB025177en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2022JB025177
dc.identifier.cristin2076733
dc.source.journalJournal of Geophysical Research (JGR): Solid Earthen_US
dc.identifier.citationJournal of Geophysical Research (JGR): Solid Earth. 2022, 127 (11), e2022JB025177.en_US
dc.source.volume127en_US
dc.source.issue11en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal