Vis enkel innførsel

dc.contributor.authorWatts, Hannah
dc.contributor.authorBooth, Adam D.
dc.contributor.authorReinardy, Benedict T. I.
dc.contributor.authorKillingbeck, Siobhan F.
dc.contributor.authorJansson, Peter
dc.contributor.authorClark, Roger A.
dc.contributor.authorChandler, Benjamin M. P.
dc.contributor.authorNesje, Atle
dc.date.accessioned2023-02-27T09:34:39Z
dc.date.available2023-02-27T09:34:39Z
dc.date.created2022-05-01T13:08:54Z
dc.date.issued2022
dc.identifier.issn2296-6463
dc.identifier.urihttps://hdl.handle.net/11250/3054103
dc.description.abstractGeophysical surveys provide an efficient and non-invasive means of studying subsurface conditions in numerous sedimentary settings. In this study, we explore the application of three geophysical methods to a proglacial environment, namely ground penetrating radar (GPR), seismic refraction and multi-channel analysis of surface waves (MASW). We apply these geophysical methods to three glacial landforms with contrasting morphologies and sedimentary characteristics, and we use the various responses to assess the applicability and limitations of each method for these proglacial targets. Our analysis shows that GPR and seismic (refraction and MASW) techniques can provide spatially extensive information on the internal architecture and composition of moraines, but careful survey designs are required to optimise data quality in these geologically complex environments. Based on our findings, we define a number of recommendations and a potential workflow to guide future geophysical investigations in analogous settings. We recommend the initial use of GPR in future studies of proglacial environments to inform (a) seismic survey design and (b) the selection of seismic interpretation techniques. We show the benefits of using multiple GPR antenna frequencies (e.g., 25 and 100 MHz) to provide decimetre scale imaging in the near surface (e.g., < 15 m) while also enabling signal penetration to targets at up to ∼40 m depth (e.g., bedrock). This strategy helps to circumvent changes in radar signal penetration resulting from variations in substrate conductivity or abundant scatterers. Our study also demonstrates the importance of combining multiple geophysical methods together with ground-truthing through sedimentological observations to reduce ambiguity in interpretations. Implementing our recommendations will improve geophysical survey practice in the field of glacial geology and allow geophysical methods to play an increasing role in the interpretation of glacial landforms and sediments.en_US
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAn Assessment of Geophysical Survey Techniques for Characterising the Subsurface Around Glacier Margins, and Recommendations for Future Applicationsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 Watts, Booth, Reinardy, Killingbeck, Jansson, Clark, Chandler and Nesjeen_US
dc.source.articlenumber734682en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3389/feart.2022.734682
dc.identifier.cristin2020395
dc.source.journalFrontiers in Earth Scienceen_US
dc.identifier.citationFrontiers in Earth Science. 2022, 10, 734682.en_US
dc.source.volume10en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal