Vis enkel innførsel

dc.contributor.authorMarkusson, Sigurbjörn
dc.contributor.authorHallin, Erik Ingmar
dc.contributor.authorBustad, Helene J.
dc.contributor.authorRaasakka, Arne
dc.contributor.authorXu, Ju
dc.contributor.authorMuruganandam, Gopinath
dc.contributor.authorLoris, Remy
dc.contributor.authorMartinez, Aurora
dc.contributor.authorBramham, Clive Raymond Evjen
dc.contributor.authorKursula, Petri
dc.date.accessioned2023-03-08T14:02:40Z
dc.date.available2023-03-08T14:02:40Z
dc.date.created2022-09-13T19:58:53Z
dc.date.issued2022
dc.identifier.issn1932-6203
dc.identifier.urihttps://hdl.handle.net/11250/3057132
dc.description.abstractActivity-regulated cytoskeleton-associated protein (Arc) is a multidomain protein of retroviral origin with a vital role in the regulation of synaptic plasticity and memory formation in mammals. However, the mechanistic and structural basis of Arc function is poorly understood. Arc has an N-terminal domain (NTD) involved in membrane binding and a C-terminal domain (CTD) that binds postsynaptic protein ligands. In addition, the NTD and CTD both function in Arc oligomerisation, including assembly of retrovirus-like capsids involved in intercellular signalling. To obtain new tools for studies on Arc structure and function, we produced and characterised six high-affinity anti-Arc nanobodies (Nb). The CTD of rat and human Arc were both crystallised in ternary complexes with two Nbs. One Nb bound deep into the stargazin-binding pocket of Arc CTD and suggested competitive binding with Arc ligand peptides. The crystallisation of the human Arc CTD in two different conformations, accompanied by SAXS data and molecular dynamics simulations, paints a dynamic picture of the mammalian Arc CTD. The collapsed conformation closely resembles Drosophila Arc in capsids, suggesting that we have trapped a capsid-like conformation of the human Arc CTD. Our data obtained with the help of anti-Arc Nbs suggest that structural dynamics of the CTD and dimerisation of the NTD may promote the formation of capsids. Taken together, the recombinant high-affinity anti-Arc Nbs are versatile tools that can be further developed for studying mammalian Arc structure and function, as well as mechanisms of Arc capsid formation, both in vitro and in vivo. For example, the Nbs could serve as a genetically encoded tools for inhibition of endogenous Arc interactions in the study of neuronal function and plasticity.en_US
dc.language.isoengen_US
dc.publisherPLOSen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHigh-affinity anti-Arc nanobodies provide tools for structural and functional studiesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumbere0269281en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1371/journal.pone.0269281
dc.identifier.cristin2051424
dc.source.journalPLOS ONEen_US
dc.identifier.citationPLOS ONE. 2022, 17 (6), e0269281.en_US
dc.source.volume17en_US
dc.source.issue6en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal