Efficient extraction of small microplastic particles from rat feed and feces for quantification
Journal article, Peer reviewed
Published version
View/ Open
Date
2023Metadata
Show full item recordCollections
- Department of Clinical Medicine [2087]
- Registrations from Cristin [10285]
Abstract
To date, microplastic is ubiquitously encountered in the environment. Studies analyzing microplastic in terrestrial ecosystems, including animal feces and feed, are few. Microplastic quantification method validation and harmonization are not yet far developed. For the analysis of small microplastic, approximately <0.5 mm, extraction from organic and inorganic materials is fundamental prior to quantitative and qualitative analysis. Method validation, including recovery studies, are necessary throughout the analytical chain. In this study, we developed an optimized, efficient protocol with a duration of 72 h for the digestion of laboratory rat feed and feces. A combination of a mild acidic (H2O2 15%; HNO3 5%) and an alkaline treatment (10% KOH) dissolving the previous filter, followed by enzymatic digestion (Viscozyme®L) proved to be efficient for the extraction and identification of spiked polyamide (15–20 μm) and polyethylene (40–48 μm) from feed and feces samples from rats, showing high recovery rates. Extracted rat feces samples from an in vivo study in which Wistar rats were fed with feed containing microplastic were analyzed with pyrolysis-gas chromatography-Orbitrap™ mass spectrometry, quantifying recovered microplastic in rat feces in environmentally relevant concentrations. The presented three-step protocol provides a suitable, time and cost-effective method to extract microplastic from rat feed and feces.