Vis enkel innførsel

dc.contributor.authorHimmelstrup, Jonas
dc.contributor.authorJensen, Vidar Remi
dc.date.accessioned2023-12-21T13:54:42Z
dc.date.available2023-12-21T13:54:42Z
dc.date.created2023-05-11T13:30:08Z
dc.date.issued2023
dc.identifier.issn1089-5639
dc.identifier.urihttps://hdl.handle.net/11250/3108652
dc.description.abstractSamarium diiodide (SmI2, Kagan’s reagent) is a one-electron reductant with applications ranging from organic synthesis to nitrogen fixation. Highly inaccurate relative energies of redox and proton-coupled electron transfer (PCET) reactions of Kagan’s reagent are predicted by pure and hybrid density functional approximations (DFAs) when only scalar relativistic effects are accounted for. Calculations including spin–orbit coupling (SOC) show that the SOC-induced differential stabilization of the Sm(III) versus the Sm(II) ground state is little affected by ligands and solvent, and a standard SOC correction derived from atomic energy levels is thus included in the reported relative energies. With this correction, selected meta-GGA and hybrid meta-GGA functionals predict Sm(III)/Sm(II) reduction free energies to within 5 kcal/mol of the experiment. Considerable discrepancies remain, however, in particular for the PCET-relevant O–H bond dissociation free energies, for which no regular DFA is within 10 kcal/mol of the experiment or CCSD(T). The main cause behind these discrepancies is the delocalization error, which leads to excess ligand-to-metal electron donation and destabilizes Sm(III) versus Sm(II). Fortunately, static correlation is unimportant for the present systems, and the error may be reduced by including information from virtual orbitals via perturbation theory. Contemporary, parametrized double-hybrid methods offer promise as companions to experimental campaigns in the further development of the chemistry of Kagan’s reagent.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEnabling Molecular-Level Computational Description of Redox and Proton-Coupled Electron Transfer Reactions of Samarium Diiodideen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1021/acs.jpca.3c00418
dc.identifier.cristin2146953
dc.source.journalJournal of Physical Chemistry Aen_US
dc.source.pagenumber3796–3803en_US
dc.identifier.citationJournal of Physical Chemistry A. 2023, 127, 17, 3796–3803.en_US
dc.source.volume127en_US
dc.source.issue17en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal