Show simple item record

dc.contributor.authorHussien Elkhorbatly, Bashar
dc.date.accessioned2024-05-06T06:33:05Z
dc.date.available2024-05-06T06:33:05Z
dc.date.created2024-02-15T12:11:38Z
dc.date.issued2024
dc.identifier.issn0026-9255
dc.identifier.urihttps://hdl.handle.net/11250/3129112
dc.description.abstractIn the context of the initial data and an amplitude parameter ε, we establish a local existence result for a highly nonlinear shallow water equation on the real line. This result holds in the space Hk as long as k > 5/2. Additionally, we illustrate that the threshold time for the occurrence of wave breaking in the surging type is on the order of ε−1, while plunging breakers do not manifest. Lastly, in accordance with ODE theory, it is demonstrated that there are no exact solitary wave solutions in the form of sech and sech2.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe highly nonlinear shallow water equation: local well-posedness, wave breaking data and non-existence of sech2 solutionsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2024 the authoren_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1007/s00605-024-01945-3
dc.identifier.cristin2246353
dc.source.journalMonatshefte für Mathematiken_US
dc.source.pagenumber635-651en_US
dc.identifier.citationMonatshefte für Mathematik. 2024, 203, 635-651.en_US
dc.source.volume203en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal