Show simple item record

dc.contributor.authorCole, Alison G.
dc.contributor.authorJahnel, Stefan M.
dc.contributor.authorKaul, Sabrina
dc.contributor.authorSteger, Julia
dc.contributor.authorHagauer, Julia
dc.contributor.authorDenner, Andreas
dc.contributor.authorMurguia, Patricio Ferrer
dc.contributor.authorTaudes, Elisabeth
dc.contributor.authorZimmermann, Bob
dc.contributor.authorReischl, Robert
dc.contributor.authorSteinmetz, Patrick
dc.contributor.authorTechnau, Ulrich
dc.date.accessioned2024-08-08T12:24:38Z
dc.date.available2024-08-08T12:24:38Z
dc.date.created2023-06-27T11:22:25Z
dc.date.issued2023
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/11250/3145412
dc.description.abstractAnimals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes. We find that the regulatory gene set of the slow cnidarian muscles is remarkably similar to the bilaterian cardiac muscle, while the two fast muscles differ substantially from each other in terms of transcription factor profiles, though driving the same set of structural protein genes and having similar physiological characteristics. We show that anthozoan-specific paralogs of Paraxis/Twist/Hand-related bHLH transcription factors are involved in the formation of fast and slow muscles. Our data suggest that the subsequent recruitment of an entire effector gene set from the inner cell layer into the neural ectoderm contributes to the evolution of a novel muscle cell type. Thus, we conclude that extensive transcription factor gene duplications and co-option of effector modules act as an evolutionary mechanism underlying cell type diversification during metazoan evolution.en_US
dc.language.isoengen_US
dc.publisherNatureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMuscle cell-type diversification is driven by bHLH transcription factor expansion and extensive effector gene duplicationsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.source.articlenumber1747en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1038/s41467-023-37220-6
dc.identifier.cristin2158481
dc.source.journalNature Communicationsen_US
dc.identifier.citationNature Communications. 2023, 14 (1), 1747.en_US
dc.source.volume14en_US
dc.source.issue1en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal