• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Earth Science
  • Department of Earth Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolution of a major segmented normal fault during multiphase rifting: The origin of plan-view zigzag geometry

Henstra, Gijs; Rotevatn, Atle; Gawthorpe, Steven L.; Ravnås, Rodmar
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Accepted version (25.96Mb)
URI
https://hdl.handle.net/1956/10291
Date
2015-05
Metadata
Show full item record
Collections
  • Department of Earth Science [836]
Original version
https://doi.org/10.1016/j.jsg.2015.02.005
Abstract
This case study addresses fault reactivation and linkage between distinct extensional episodes with variable stretching direction. Using 2-D and 3-D seismic reflection data we demonstrate how the Vesterdjupet Fault Zone, one of the basin-bounding normal fault zones of the Lofoten margin (north Norway), evolved over c. 150 Myr as part of the North Atlantic rift. This fault zone is composed of NNE-SSW- and NE-SW-striking segments that exhibit a zigzag geometry. The structure formed during Late Jurassic and Early Cretaceous rifting from selective reactivation and linkage of Triassic faults. A rotation of the overall stress field has previously been invoked to have taken place between the Triassic and Jurassic rift episodes along the Lofoten margin. A comparison to recent physical analogue models of non-coaxial extension reveals that this suggested change in least principal stress for the Lofoten margin may best explain the zigzag-style linkage of the Triassic faults, although alternative models cannot be ruled out. This study underlines the prediction from physical models that the location and orientation of early phase normal faults can play a pivotal role in the evolution of subsequent faults systems in multi-rift systems.
Publisher
Elsevier
Journal
Journal of Structural Geology
Copyright
Copyright 2015 Elsevier Ltd. All rights reserved.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit