Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia
Andresen, Vibeke; Erikstein, Bjarte Skoe; Mukherjee, Herschel; Sulen, Andre; Popa, Mihaela Lucia; Sørnes, Steinar; Reikvam, Håkon; Chan, Kok-Ping; Hovland, Randi; McCormack, Emmet; Bruserud, Øystein; Myers, Andrew G.; Gjertsen, Bjørn Tore
Peer reviewed, Journal article
Published version
View/ Open
Date
2016-12-01Metadata
Show full item recordCollections
Original version
https://doi.org/10.1038/cddis.2016.392Abstract
Mutated nucleophosmin 1 (NPM1) acts as a proto-oncogene and is present in ~30% of patients with acute myeloid leukemia (AML). Here we examined the in vitro and in vivo anti-leukemic activity of the NPM1 and chromosome region maintenance 1 homolog (CRM1) interacting natural product avrainvillamide (AVA) and a fully syntetic AVA analog. The NPM1-mutated cell line OCI-AML3 and normal karyotype primary AML cells with NPM1 mutations were significantly more sensitive towards AVA than cells expressing wild-type (wt) NPM1. Furthermore, the presence of wt p53 sensitized cells toward AVA. Cells exhibiting fms-like tyrosine kinase 3 (FLT3) internal tandem duplication mutations also displayed a trend toward increased sensitivity to AVA. AVA treatment induced nuclear retention of the NPM1 mutant protein (NPMc+) in OCI-AML3 cells and primary AML cells, caused proteasomal degradation of NPMc+ and the nuclear export factor CRM1 and downregulated wt FLT3 protein. In addition, both AVA and its analog induced differentiation of OCI-AML3 cells together with an increased phagocytotic activity and oxidative burst potential. Finally, the AVA analog displayed anti-proliferative activity against subcutaneous xenografted HCT-116 and OCI-AML3 cells in mice. Our results demonstrate that AVA displays enhanced potency against defined subsets of AML cells, suggesting that therapeutic intervention employing AVA or related compounds may be feasible.