Show simple item record

dc.contributor.authorBernhardt, Paul V.
dc.contributor.authorBilyj, Jessica K.
dc.contributor.authorBrosius, Victor
dc.contributor.authorChernyshov, Dmitry
dc.contributor.authorDeeth, Robert J.
dc.contributor.authorFoscato, Marco
dc.contributor.authorJensen, Vidar Remi
dc.contributor.authorMertes, Nicole
dc.contributor.authorRiley, Mark J.
dc.contributor.authorTörnroos, Karl Wilhelm
dc.date.accessioned2020-06-12T16:34:39Z
dc.date.available2020-06-12T16:34:39Z
dc.date.issued2018-01-06
dc.PublishedBernhardt P, Bilyj JK, Brosius V, Chernyshov D, Deeth RJ, Foscato M, Jensen VR, Mertes N, Riley M, Törnroos KW. Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction. Chemistry - A European Journal. 2018;24(20):5082-5085eng
dc.identifier.issn0947-6539en_US
dc.identifier.issn1521-3765en_US
dc.identifier.urihttps://hdl.handle.net/1956/22572
dc.description.abstractSingle crystal structural analysis of [Fe^II(tame)_2]Cl_2⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d^6 state and a low temperature low‐spin ground state without change of the symmetry of the crystal structure. The temperature at which the high and low spin states are present in equal proportions is T_1/2=140 K. Single crystal, variable‐temperature optical spectroscopy of [Fe^II(tame)_2]Cl_2⋅MeOH is consistent with this change in electronic ground state. These experimental results confirm the spin activity predicted for [Fe^II(tame)_2]^2+ during its de novo artificial evolution design as a spin‐crossover complex [Chem. Inf. Model . 2015 , 55 , 1844], offering the first experimental validation of a functional transition‐metal complex predicted by such in silico molecular design methods. Additional quantum chemical calculations offer, together with the crystal structure analysis, insight into the role of spin‐passive structural components. A thermodynamic analysis based on an Ising‐like mean field model (Slichter–Drickammer approximation) provides estimates of the enthalpy, entropy and cooperativity of the crossover between the high and low spin states.en_US
dc.language.isoengeng
dc.publisherWileyen_US
dc.rightsAttribution CC BYeng
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/eng
dc.subjectamineseng
dc.subjectdensity functional calculationseng
dc.subjectironeng
dc.subjectoptical spectroscopyeng
dc.subjectspin crossovereng
dc.titleSpin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Predictionen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2020-01-31T09:56:44Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2018 The Author(s)en_US
dc.identifier.doihttps://doi.org/10.1002/chem.201705439
dc.identifier.cristin1613523
dc.source.journalChemistry - A European Journal
dc.relation.projectNotur/NorStore: NS2506K
dc.relation.projectCOST (European Cooperation in Science and Technology): CM1305
dc.relation.projectNorges forskningsråd: 262370
dc.relation.projectNorges forskningsråd: 205273
dc.relation.projectNotur/NorStore: NN2506K


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution CC BY
Except where otherwise noted, this item's license is described as Attribution CC BY