• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Master theses
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Master theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometric reconstruction and persistence methods

Garcia Pascual, Belen
Master thesis
Thumbnail
View/Open
master thesis (1.772Mb)
URI
https://hdl.handle.net/1956/23118
Date
2020-07-01
Metadata
Show full item record
Collections
  • Master theses [87]
Abstract
In the present work we reconstruct the homotopy type of an unknown Euclidean subspace from a known sample of data. We carry out such reconstruction through generalized Čech complexes, by choosing radii which are less or equal than the reach of the subspace and by applying the Nerve Lemma. We also approach the reconstruction of a geodesic subspace through its convexity radius and a dense enough sample. Afterwards, we obtain homology and homotopy groups in terms of persistences, together with interleavings and isomorphisms between them. We conclude studying the reconstruction of a particular subspace that has reach equal to zero, where our results cannot be applied.
Publisher
The University of Bergen
Copyright
Copyright the Author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit