• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Master theses
  • Vis innførsel
  •   Hjem
  • Faculty of Mathematics and Natural Sciences
  • Department of Mathematics
  • Master theses
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

APARCH Models Estimated by Support Vector Regression

Waagbø, Arne Ladstein
Master thesis
Thumbnail
Åpne
master thesis (11.29Mb)
Permanent lenke
https://hdl.handle.net/11250/2761216
Utgivelsesdato
2021-06-01
Metadata
Vis full innførsel
Samlinger
  • Master theses [87]
Sammendrag
This thesis presents a comprehensive study of asymmetric power autoregressive conditional heteroschedasticity (APARCH) models for modelling volatility in financial return data. The goal is to estimate and forecast volatility in financial data with excess kurtosis, volatility clustering and asymmetric distribution. Models based on maximum likelihood estimation (MLE) will be compared to the kernel based support vector regression (SVR). The popular Gaussian kernel and a wavelet based kernel will be used for the SVR. The methods will be tested on empirical data, including stock index prices, credit spreads and electric power prices. The results indicate that asymmetric power models are needed to capture the asseymtry in the data. Furthermore, SVR models are able to improve estimation and forecasting accuracy, compared with the APARCH models based on MLE.
Utgiver
The University of Bergen
Opphavsrett
Copyright the Author. All rights reserved

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit