Vis enkel innførsel

dc.contributor.authorWestbye, Alexander
dc.contributor.authorSanchez, Maria Asuncion Aranda
dc.contributor.authorDietzel, Pascal D.C.
dc.contributor.authorDi Felice, Luca
dc.date.accessioned2021-06-28T12:26:16Z
dc.date.available2021-06-28T12:26:16Z
dc.date.created2020-01-20T13:44:31Z
dc.date.issued2020
dc.PublishedInternational Journal of Greenhouse Gas Control. 2020, 95 .
dc.identifier.issn1750-5836
dc.identifier.urihttps://hdl.handle.net/11250/2761662
dc.description.abstractCombined calcium-copper materials based on calcium zirconate (CaO/CuO/CaZrO3) for Calcium-Copper Chemical Looping (Ca-Cu Looping) have been synthesized using a scalable wet chemical method and characterized by powder X-ray diffraction (PXRD) with Rietveld refinement, temperature-programmed reduction (H2-TPR) and oxidation (O2-TPO), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and 45–50 cycles in a thermogravimetric analyser (TGA) representing realistic Ca-Cu Looping conditions. A material at 50 wt% active CuO loading and a CuO/CaO weight ratio of 2 deactivated due to copper migration and agglomeration, while materials with 40 wt% active CuO loading were stable throughout TGA cycles at CuO/CaO ratios of 2 and 10. 40 wt% CuO loaded combined CaO/CuO/CaZrO3 materials are promising candidates for Ca-Cu Looping with a demonstrated tuneable and stable CuO/CaO ratio (≥ 2 [wt/wt]) that could lead to process intensification. The maximum CuO loading for the investigated materials is likely found in the range of [40, 50) wt%, subject to the constraints of Ca-Cu Looping relevant CuO/CaO ratios (≥ 2 [wt/wt]) and the performed TGA testing.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleA calcium zirconate based combined material for calcium-copper chemical looping technologyen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2020 Elsevieren_US
dc.source.articlenumber102953en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doi10.1016/j.ijggc.2019.102953
dc.identifier.cristin1777839
dc.source.journalInternational Journal of Greenhouse Gas Controlen_US
dc.source.4095
dc.relation.projectNorges forskningsråd: 254736en_US
dc.identifier.citationInternational Journal of Greenhouse Gas Control. 2020, 95, 102953en_US
dc.source.volume95en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal