Vis enkel innførsel

dc.contributor.authorBlanco, Christian O.
dc.contributor.authorNascimento, Daniel L.
dc.contributor.authorFogg, Deryn Elizabeth
dc.date.accessioned2022-03-29T10:37:57Z
dc.date.available2022-03-29T10:37:57Z
dc.date.created2021-09-29T14:42:37Z
dc.date.issued2021
dc.identifier.issn0276-7333
dc.identifier.urihttps://hdl.handle.net/11250/2988264
dc.description.abstractClean, high-yielding routes are described to ruthenium–diiodide catalysts that were recently shown to enable high productivity in olefin metathesis. For the second-generation Grubbs and Hoveyda catalysts (GII: RuCl2(H2IMes)(PCy3)(═CHPh); HII: RuCl2(H2IMes)(═CHAr), Ar = C6H4-2-OiPr), slow salt metathesis is shown to arise from the low lability of the ancillary PCy3 or ether ligands, which retards access to the four-coordinate intermediate required for efficient halide exchange. To exploit the lability of the first-generation catalysts, the diiodide complex RuI2(PCy3)(═CHAr) HI-I2 was prepared by treating “Grubbs I” (RuCl2(PCy3)2(═CHPh), GI) with NaI, H2C═CHAr (1a), and a phosphine-scavenging Merrifield iodide (MF-I) resin. Subsequent installation of H2IMes or cyclic (alkyl)(amino)carbene (CAAC) ligands afforded the second-generation iodide catalysts in good to excellent yields. Given the incompatibility of the nitro group with a free carbene, the iodo-Grela catalyst RuI2(H2IMes)(═CHAr′) (nG-I2: Ar′ = C6H3-2-OiPr-4-NO2) was instead accessed by sequential salt metathesis of GI with NaI, installation of H2IMes, and finally cross-metathesis with the nitrostyrenyl ether H2C═CHAr′ (1b), with MF-I as the phosphine scavenger. The bulky iodide ligands improve the selectivity for macrocyclization in ring-closing metathesis.en_US
dc.language.isoengen_US
dc.publisherACSen_US
dc.relation.urihttps://pubs.acs.org/doi/pdf/10.1021/acs.organomet.1c00253
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleRoutes to High-Performing Ruthenium–Iodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchangeen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1021/acs.organomet.1c00253
dc.identifier.cristin1940672
dc.source.journalOrganometallicsen_US
dc.source.pagenumber1811-1816en_US
dc.relation.projectNorges forskningsråd: 288135en_US
dc.identifier.citationOrganometallics. 2021, 40(12), 1811-1816.en_US
dc.source.volume40en_US
dc.source.issue12en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal