Show simple item record

dc.contributor.authorBlanco, Christian O.
dc.contributor.authorNascimento, Daniel L.
dc.contributor.authorFogg, Deryn Elizabeth
dc.date.accessioned2022-03-29T10:37:57Z
dc.date.available2022-03-29T10:37:57Z
dc.date.created2021-09-29T14:42:37Z
dc.date.issued2021
dc.identifier.issn0276-7333
dc.identifier.urihttps://hdl.handle.net/11250/2988264
dc.description.abstractClean, high-yielding routes are described to ruthenium–diiodide catalysts that were recently shown to enable high productivity in olefin metathesis. For the second-generation Grubbs and Hoveyda catalysts (GII: RuCl2(H2IMes)(PCy3)(═CHPh); HII: RuCl2(H2IMes)(═CHAr), Ar = C6H4-2-OiPr), slow salt metathesis is shown to arise from the low lability of the ancillary PCy3 or ether ligands, which retards access to the four-coordinate intermediate required for efficient halide exchange. To exploit the lability of the first-generation catalysts, the diiodide complex RuI2(PCy3)(═CHAr) HI-I2 was prepared by treating “Grubbs I” (RuCl2(PCy3)2(═CHPh), GI) with NaI, H2C═CHAr (1a), and a phosphine-scavenging Merrifield iodide (MF-I) resin. Subsequent installation of H2IMes or cyclic (alkyl)(amino)carbene (CAAC) ligands afforded the second-generation iodide catalysts in good to excellent yields. Given the incompatibility of the nitro group with a free carbene, the iodo-Grela catalyst RuI2(H2IMes)(═CHAr′) (nG-I2: Ar′ = C6H3-2-OiPr-4-NO2) was instead accessed by sequential salt metathesis of GI with NaI, installation of H2IMes, and finally cross-metathesis with the nitrostyrenyl ether H2C═CHAr′ (1b), with MF-I as the phosphine scavenger. The bulky iodide ligands improve the selectivity for macrocyclization in ring-closing metathesis.en_US
dc.language.isoengen_US
dc.publisherACSen_US
dc.relation.urihttps://pubs.acs.org/doi/pdf/10.1021/acs.organomet.1c00253
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleRoutes to High-Performing Ruthenium–Iodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchangeen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1021/acs.organomet.1c00253
dc.identifier.cristin1940672
dc.source.journalOrganometallicsen_US
dc.source.pagenumber1811-1816en_US
dc.relation.projectNorges forskningsråd: 288135en_US
dc.identifier.citationOrganometallics. 2021, 40(12), 1811-1816.en_US
dc.source.volume40en_US
dc.source.issue12en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal