Large area microwave plasma CVD of diamond using composite right/left-handed materials
Zalieckas, Justas; Pobedinskas, P.; Greve, Martin Møller; Eikehaug, Kristoffer; Haenen, K.; Holst, Bodil
Journal article, Peer reviewed
Published version

View/ Open
Date
2021Metadata
Show full item recordCollections
Abstract
Diamond growth at low temperatures (≤400 °C) and over large areas is attractive for materials, which are sensitive to high temperatures and require good electronic, chemical or surface tribological properties. Resonant-cavity microwave plasma enhanced (MWPE) chemical vapor deposition (CVD) is a standard method for growing diamonds, however, with limited deposition area. An alternative method for CVD of diamond over large area and at low temperature is to use a surface wave plasma (SWP). In this work we introduce a novel method to excite SWP using composite right/left-handed (CRLH) materials and demonstrate growth of nanocrystalline diamond (NCD) on 4-inch Si wafers. The method uses a set of slotted CRLH waveguides coupled to a resonant launcher, which is connected to a deposition chamber. Each CRLH waveguide supports infinite wavelength propagation and consists of a chain of periodically cascaded unit cells. The SWP is excited by a set of slots placed to interrupt large area surface current on the resonant launcher. This configuration yields a uniform gas discharge distribution. We achieve 80 nm/h growth rate for NCD films with a low surface roughness (5–10 nm) at 395 °C and 0.5 mbar pressure using a H2/CH4/CO2 gas mixture.